Name______

What is the strongest intermolecular force present for each of these substances? (London dispersion, hydrogen bonding, dipole-dipole)

- 1) hydrogen (H₂)______
- 2) carbon monoxide (CO)
- 3) silicon tetrafluoride (SiF₄)______
- 4) nitrogen tribromide (NBr₃)
- 5) water (H₂O)______
- 6) acetone (CH₂O) _____
- 7) methane (CH₄) ______
- 8) benzene (C₆H₆)______
- 9) ammonia (NH₃) ______
- 10) methanol (CH₃OH)

For each pair of molecules, please check off <u>all</u> intermolecular forces expected between them.

O=C=O and O=C=O	O II and Na +
Ion-Dipole	
Hydrogen Bonding	11 11
Dipole-Dipole	Ion-Dipole
London Dispersion	Hydrogen Bonding
	Dipole-Dipole
	London Dispersion
O and O O O O O O O O O O O O O O O O O O O	and P
	lon-Dipole
Ion-Dipole	Hydrogen Bonding
Hydrogen Bonding	Dipole-Dipole
Dipole-Dipole	London Dispersion
London Dispersion	

Name_____

12)

a)

Which of the following pairs of compounds can form H-bonds? For those that can, mark the position of the partial positive (δ^+) and negative (δ^-) charges in the molecules and indicate where the H-bonds will form. For those that can't form H-bonds, describe the strongest IMF available to that pair of compounds.

13)

a) HF b) PCl_3 c) $FeCl_2$ d) SO_2 e) F_2

Which of the preceding compounds is most likely to form a solid compound at room temperature?

Of the gases, which would be hardest to condense to a liquid under pressure? _____ HINT: rank from lowest to higher IMFs. Higher attractive forces mean higher boiling & melting points! Use your IMF reference sheet to judge relative strengths of different types of forces.