Name______ What is the strongest intermolecular force present for each of these substances? (London dispersion, hydrogen bonding, dipole-dipole) - 1) hydrogen (H₂)______ - 2) carbon monoxide (CO) - 3) silicon tetrafluoride (SiF₄)______ - 4) nitrogen tribromide (NBr₃) - 5) water (H₂O)______ - 6) acetone (CH₂O) _____ - 7) methane (CH₄) ______ - 8) benzene (C₆H₆)______ - 9) ammonia (NH₃) ______ - 10) methanol (CH₃OH) For each pair of molecules, please check off <u>all</u> intermolecular forces expected between them. | O=C=O and O=C=O | O
II and Na + | |---|-------------------| | Ion-Dipole | | | Hydrogen Bonding | 11 11 | | Dipole-Dipole | Ion-Dipole | | London Dispersion | Hydrogen Bonding | | | Dipole-Dipole | | | London Dispersion | | O and O O O O O O O O O O O O O O O O O O O | and P | | | lon-Dipole | | Ion-Dipole | Hydrogen Bonding | | Hydrogen Bonding | Dipole-Dipole | | Dipole-Dipole | London Dispersion | | London Dispersion | | Name_____ 12) a) Which of the following pairs of compounds can form H-bonds? For those that can, mark the position of the partial positive (δ^+) and negative (δ^-) charges in the molecules and indicate where the H-bonds will form. For those that can't form H-bonds, describe the strongest IMF available to that pair of compounds. 13) a) HF b) PCl_3 c) $FeCl_2$ d) SO_2 e) F_2 Which of the preceding compounds is most likely to form a solid compound at room temperature? Of the gases, which would be hardest to condense to a liquid under pressure? _____ HINT: rank from lowest to higher IMFs. Higher attractive forces mean higher boiling & melting points! Use your IMF reference sheet to judge relative strengths of different types of forces.